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LETI‘ER TO THE EDITOR 

A new type of kinetic critical phenomenon 

Peter Grassberger, Friedrich Krause and Tassilo von der Twer 
Physics Department, University of Wuppertal, Fachbreich 8-Physik, GauDstrasse 20, 
D-5600 Wuppertal, Germany 

Received 28 November 1983 

Abstract. We study a new critical phenomenon in a non-thermal one-dimensional lattice 
model. I t  is characterised by the transition from stability to instability of kinks between 
ordered states. Below the critical point, the kinks are stable and move by annihilating 
random walks. Above the critical point, they are unstable against creation of kink-antikink 
pairs. (The spontaneous production of pairs is assumed to be absent.) At the critical point 
p = per, the density of kinks decreases like n - r ” ,  with CY = 0.27 f 0.08. Above the critical 
point, the density of kinks in the stationary state is approximately ( p - p , J B  with p = 
0.6*0.2. Possible extensions to two or more dimensions and possible applications are 
discussed. 

It is well known that thermal critical phenomena cannot occur in one-dimensional 
systems. The same is not true for non-thermal systems, provided they have absorbing? 
(or ‘quiescent’) states. 

The typical example is directed percolation in one space plus one time direction 
(Durrett 1982, Kinzel and Yeomans 1981), which shows the same critical phenomenon 
as reggeon field theory (Grassberger and de la Torre 1979, Cardy and Sugar 1980) 
and the basic contact model (Griffeath 1979). This class of phenomena is characterised 
by a single absorbing state (all sites not ‘wetted’), and thus there is no symmetry 
breakdown related to them. After realising (Grassberger 1982) that the same critical 
phenomenon seems to occur also in Schlogl’s second model (Schlogl 1972) (contrary 
to previous investigations which claimed that model to be Ising-like (Nicolis and 
Malek-Mansour 1980, Brachet and Tirapegui 1981, Borckmans et al 1977, 1981)), 
it was conjectured (Grassberger 1982) that all models with a single absorbing state 
should show this same critical phenomenon. 

In the present letter, we shall study a class of models with two absorbing states. 
These two states are mutually symmetrical, and thus the transition is accompanied by 
a spontaneous breakdown of symmetry. 

Technically, we shall study two models which are both one-dimensional ‘elementary’ 
cellular automata (in the sense of Wolfram (1983)) with very specific added noise. 
Space and time are discrete in these models. The states are {S,li E 2); S, = 0 , l  and 
the transition rules depend on next neighbours only. 

Specifically, the models are chasracterised by the rules 

011 110 ooo 
t :  111 101 010 100 001 ‘ 
t + l :  0 0 1 1 1 0 modelA 

0 with prob. p 
1 with prob. 1 - p  

t We call a state ‘absorbing’ if it can be entered but cannot be left. Note that spatially infinite systems can 
admit several absorbing states in this sense. 
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and 

t :  111 101 010 100 001 ' 
t + l :  0 1 0 1 1 0 modelB. 

011 110 , ooo 
+ 

1 with prob. p 
0 with prob. 1 - p  

For p = O ,  these are rule number 94 (in the notation of Wolfram (1983)) (model 
A) and 50 (model B). Both of these rules are 'simple' in the sense of Wolfram (1983): 
when starting with a random initial condition, the system very soon settles in a stationary 
state (rule 94), resp. in a state of period 2 (rule 50). This is shown also in figure 1. 

Consider now very small values of p ,  i.e. a small probability for 01 1 + 0 in model 
A and a small probability for 011 + 1 in model B. As seen from figure 2, the system 
now orders itself spontaneously: there are two symmetric absorbing states in both 
models. For model A, they correspond to a pattern consisting of vertical stripes: 

0 ieven 1 ieven 
1 iodd 0 iodd 

and Si={ 

and for model B, they correspond to a chess-board pattern. 
After a random start, there are small ordered domains separated by kinks. For 

p = 0, these kinks are stationary, but for small p # 0 they move by annihilating random 

Figure 1. Patterns created, with p = 0 from ( a )  model A and ( b )  model B. The starting 
configuration was random. 

( b l  I l l 1  

rigure 2. Patterns created, from a random initial configuration, with p Z 0 .  Again ( a )  
orresponds to model A with p = 0.05, and ( b )  corresponds to model B with P = 0.2. 
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walks. The diffusion coefficient in both cases is otp for small p, and the kink density 
decreases correspondingly (Griffeath 1979, Grassberger 1983) like ( p  t ) - ' / 2 .  

In addition to enhancing the random walk, increasing p has another effect: it leads 
to a splitting of kinks, 

kink+ kink+ (kink+antikink). 

For small p, this creation of new kinks is outpowered by their annihilation. But above 
a critical value per, a single kink in the initial state is sufficient to create a completely 
disordered state (see figure 3). For p = 1, in particular, model A is just rule 22, while 
model B is rule 122, in the notation of Wolfram (1983). Both these rules are known 
to be chaotic (Wolfram 1983, Grassberger 1983). 

Figure 3. Patterns created from initial states containing a single kink, and with p > per. 
(a) shows evolution according t o  model A with p = O . 2 5  and ( b )  shows model B with 
p = 0.65. 

In order to study the behaviour near p = pCr more precisely, we have performed 
detailed Monte Carlo simulations, the results of which are shown in figure 4. They 
are based on counting the number of doubly occupied neighbours. In the ordered 
states, both models have no doubly occupied neighbours, thus this number is propor- 
tional to the number of kinks. Lattice sizes were 5,000 (model A) and 20,000 (model 
B) sites. Periodic boundary conditions were chosen in both cases. The critical probabil- 
ity was found to be 

0.13*0.02 model A { 0.555 kO.01 model B. Per = 

At p = pcr, in both models the density of doubly occupied neighbours (i.e. the density 
of kinks) decreases like 

n k i n k  - t-", a = 0.27 * 0.08. 

Above p = per, the density of kinks in the stationary state goes to zero for p + pcr like 

nkink-  (P-pcr)'? P =0.6*0.2. 



L108 Letter to the Editor 

I a1 I 
,1000- 
L -  
3 -  

n -  
5 ? -  
r 

c -  
U u -  .- 
n 

8 

$ -  

U -  

r 

n 
J z 

100- - 

Figure 4. Numbers of occupied neighbouring pairs (measuring the density of kinks), close 
to the critical probability, as a function of time. For large times, the numbers were averaged 
over many time steps in order to suppress fluctuations. Lattice sizes were ( a )  5000 sites 
(model A) and ( b )  20 000 sites (model B). 

As in other kinetic critical phenomena, there is a third critical exponent measuring 
the increase of the correlation length when either r + 00 (for p =per) or p -+ pCr (for 
t = 00). Our simulations were not precise enough to give a meaningful estimate of this 
exponent. 

Let us now discuss these results. 
First, we should point out that the very existence of the transitions depends on the 

fact that the ordered states were absolutely stable. Even the smallest amount of 
'thermal' noise would destroy them. Adding such noise to cellular automata has 
previously been studied by Wolfram (1983) and Schulman and Seiden (1978). 

Secondly, it is not difficult to envisage models with different symmetries, by consider- 
ing e.g. more than two states per lattice site or with next-nearest neighbour interactions. 
As a result, one should obtain whole classes of critical phenomena, each with different 
critical exponents. 
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When going from one to two dimensions, one can replace the kinks either by point 
defects or by domain walls. For models with two states per site and NN interactions, 
the latter is the more natural, as only a domain wall is topologically stable in the same 
way as a single kink was stable for 0 < p < pCr in the above models. Nevertheless, one 
can artificially construct lattice models in which a single defect can give rise to a defect 
pair but cannot vanish. 

In contrast to the cellular automata studied above, there are automata whose 
behaviour is extremely complex. The best known example is Conway’s game of life 
(Gardner 1979), but there exist many more similar examples (Farmer and Wolfram 
1983). They share with the above rules 94 and SO the property that they have infinitely 
many stationary estates. It seems plausible (although we have not yet found an example 
for such behaviour) that adding specific noise to these automata leads to  the selection 
of much less trivially ordered states than in the above models A, B. In the game of 
life, e.g., extremely complex patterns exist but are very rarely generated from a random 
start. Adding some transitions with a suitable rate might enhance their production 
considerably, making the game of life resemble real life much more closely. 

Finally, let us suggest a somewhat less speculative application of these ideas. It 
concerns drawing of single crystals out of a melt. Assume that the original seed contains 
some defects which prevent ordered growth in their vicinity, leading to randomly 
moving defects in the plane of growth. On the other hand assume that the melt is 
sufficiently pure so that spontaneous generation of defects can be neglected. For small 
drawing velocity, the defects will move until they either annihilate or reach the 
boundary-leading in this way to a perfect single crystal. For large drawing velocity, 
any defect might create further defects in the next deposited layer, and formation of 
a perfect crystal is impossible. 

It is of course known that the velocity of drawing has a strong effect on the 
perfectness of single crystals, but the existence of a sharp transition with associated 
universal scaling laws has not yet been observed, to our knowledge. 
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